KirchMig.ConvMap — Function.ConvMap([T,] wavelet, n...) -> W
Construct a convolution/correlation operator W which will act on an AbstractVector.
Parameters
T:Type, optional
Type of argument of W. Defaults to Float64.
wavelet
One-dimensional wavelet.
n...
Sequence of dimensions of the data.
Usage
- Forward map and Adjoint maps
The forward map W convolves the last dimension of the input with wavelet. The adjoint map W correlates the last dimension of the input with wavelet.
KirchMig.LaplacianMap — Function.LaplacianMap([T,] n...) -> Δ
Construct a discretized Laplacian operator Δ which will act on an AbstractVector.
Parameters
T:Type, optional
Type of argument of Δ. Defaults to Float64.
n...
Sequence of spatial dimensions of Δ.
Usage
- Forward map and Adjoint maps
The forward map Δ multiplies a model vector of size nz × nx × ny × ... its second order derivative. It is symmetric.
Description
The forward and adjoint maps computes the following operation
where
KirchMig.DiffZMap — Function.DiffZMap([T,] n...) -> δz
Construct a discretized z-derivative operator δz which will act on an AbstractVector.
Parameters
T:Type, optional
Type of argument of δz. Defaults to Float64.
n...
Sequence of spatial dimensions of δz.
Usage
- Forward map and Adjoint maps
The forward map δz multiplies a model vector of size nz × nx × ny × ... its first order z-derivative. The adjoint map is minus the forward map.
Description
The forward map computes the following operation
and the adjoint map computes -δz.
KirchMig.DiffXMap — Function.DiffXMap([T,] n...) -> δx
Construct a discretized x-derivative operator δx which will act on an AbstractVector.
Parameters
T:Type, optional
Type of argument of δx. Defaults to Float64.
n...
Sequence of spatial dimensions of δx.
Usage
- Forward map and Adjoint maps
The forward map δx multiplies a model vector of size nz × nx × ny × ... its first order x-derivative. The adjoint map is minus the forward map.
Description
The forward map computes the following operation
and the adjoint map computes -δx.
KirchMig.GradDivMap — Function.GradDivMap([T,] n...) -> GD
Construct a discretized gradient operator GD which will act on an AbstractVector.
Parameters
T:Type, optional
Type of argument of GD. Defaults to Float64.
n...
Sequence of spatial dimensions of GD.
Usage
- Forward map
Calculates the discrete gradient of a nz × nx × ny × ... using first order central differences.
- Adjoint map
Calculates the discrete negative divergence of a nz × nx × ny × ... using first order central differences.